Absolutely Continuous Invariant Measures That Are Maximal

نویسنده

  • A. BOYARSKY
چکیده

Let A be a certain irreducible 0-1 matrix and let t denote the family of piecewise linear Markov maps on [0,1] which are consistent with A. The main result of this paper characterizes those maps in t whose (unique) absolutely continuous invariant measure is maximal, and proves that for "most" of the maps that are consistent with A, the absolutely continuous invariant measure is not maximal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Limits of Absolutely Continuous Invariant Measures for Families of Transitive Maps

We investigate the dependence on the parameters of absolutely continuous invariant measures for a family of piecewise linear piecewise expanding maps. We construct an example to show that the transitivity of the maps does not imply the convergence of those measures to the absolutely continuous invariant measure for the limit map.

متن کامل

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Regularity and Other Properties of Absolutely Continuous Invariant Measures for the Quadratic Family

In the current paper we study in more detail some properties of the absolutely continuous invariant measures constructed in the course of the proof of Jakobson's Theorem. In particular, we show that the density of the invariant measure is continuous at Misiurewicz points. From this we deduce that the Lyapunov exponent is also continuous at these points (our considerations apply just to the para...

متن کامل

The Existence of ?nite Invariant Measures, Applications to Real 1-dimensional Dynamics

A general construction for ?nite absolutely continuous invariant measure will be presented. It will be shown that the local bounded distortion of the Radon-Nykodym derivatives of f n () will imply the existence of a ?nite invariant measure for the map f which is absolutely continuous with respect to , a measure on the phase space describing the sets of measure zero. Furthermore we will discuss ...

متن کامل

2 Jon

We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. §0 Introduction Let (X,B, m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-abs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010